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Abstract 

A new straightforward proof of the 4-colour theorem and the 5-choosable theorem is presented 
which does not require the use of computer programs. The essential idea of the proof is a simple 
partitioning (case distinction) not considered before, which is based on combined construction and 
colouring rules for triangulated planar graphs. It turns out that the incorrect part of Kempe’s 
approach [1] to prove the 4-colour theorem is not necessary for the proof. 
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1 Introduction 

A 5-colour theorem (5CT) was proved by Heawood [2] in 1890 in response to Kempe’s 
incorrect proof of the 4-colour theorem (4CT) [1], and 4CT was first proved by Appel and 
Haken (see e.g. [3]) in 1976 with the help of extensive computer calculations. An improved 
and independent version of this type of proof was given by Robertson et al. [4] in 1996. The 
first proof of the list-colouring theorem – every planar graph is 5-choosable – was provided 
by Thomassen [5] in 1994. 
 
Proofs involving the extensive use of computer programs still seem indigestible to some. 
Although the author does not share this attitude, proofs should be preferred which can be 
checked “by hand”. Here we present a new joint proof of both theorems which fulfils this 
requirement. 
 
 
2 Theorems for colouring and list-colouring planar graphs 

Theorem (4CT): The chromatic number of a planar graph is not greater than 4. 
 
Theorem (5LCT): The list-chromatic number of a planar graph is not greater than 5. 
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We will work in the vertex-colouring context with the usual assumptions, i.e. a coloured map 
in the plane or on a sphere is represented by its dual graph with coloured vertices. When two 
vertices kv  and lv  are connected by an edge lkkl vve =  (i.e. the countries on the map have a 
common line-shaped border), a (proper) colouring requires that their colours )( kk vcc =  and 

lc  be different. For convenience, integers denote colours from colour lists S, i.e.  
{ }...,3,2,1)( =∈ ii vSc   for any vertex iv . For the proof of the 4-colour theorem, we set 

SvS i =)( . In the figures, vertex numbers and colours are assigned clockwise. 
 
Without loss of generality the proof can be restricted to (plane) triangulations. A plane graph 
G is called a triangulation if it is connected, without loops, and every region including the 
infinite region is a triangle (if the infinite region has more than 3 edges, the graph is called 
near-triangular). It follows from Euler’s polyhedral formula that a triangulation with 3≥n  
vertices has 63 −n  edges. A region is a triangle if it is incident with exactly 3 edges. 
 
Any (non-triangulated) planar graph H can be generated from a triangulation G by removing 
edges and disconnected vertices, i.e. GH ⊆ . The removal of edges reduces the number of 
restrictions for colouring, i.e. the (list-) chromatic number of H is not greater than the 
corresponding number of G. 
 
 
3 Part 1 of the proof 

For any triangulated graph with 4≤n  vertices the proof of both theorems is trivial. Now 
induction with respect to n is carried out. 
 
Let 4≥n , and both theorems be true for n  vertices. Consider a planar graph with 1+n  
vertices, i.e. one vertex has to be inserted into the existing triangulation. We have to show that 
4 colours (resp. colour lists with 5≤  elements for the 5-choosable theorem) are still 
sufficient. 
 
Let v  be this additional vertex. Now the problem-solving idea is to find a suitable case 
distinction – namely the answer to the question: where do we insert? There are 3 mutually 
exclusive “target areas” for v : the interior of a region, on an edge, or on an existing vertex. 
However, in a planar graph a coincidence with an existing vertex does not increase the 
number of vertices – this case is to be excluded for planar embeddings, leaving the first two 
cases to be treated in more detail. 
 
Figures 1 – 4 illustrate this case distinction. The left diagram in each figure describes the state 
before the insertion of v  (the broken lines denote the anticipated edge changes). The right 
diagram shows the state after insertion, with the thick lines representing the added edges. 
 
Case A: Vertex v  is inserted into the interior of any finite (Case A1, Fig. 1) or of the infinite 
region (which is the exterior region of a triangle; Case A2, Fig. 2). As the topological 
differences between the 2 subcases and the topological variety in Case A2 – which vertex is 
shifted into the interior region – are irrelevant for the proof, they will not be discussed here. 
In order to obtain again a triangulation, we have to add 3 edges to the 3 triangle vertices 

321 ,, vvv , coloured by 3 different colours. Then a fourth colour is available for v . 
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Fig. 1 (Case A1): Vertex v  is inserted into the interior of a finite region (triangle) 
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Fig. 2 (Case A2): Vertex v  is inserted into the interior of the infinite region 
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Fig. 3 (Case B1): Vertex v  is inserted on one edge of the outer circuit B of the graph 
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Fig. 4 (Case B2): Vertex v  is inserted on one edge between 2 finite regions (triangles) 
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Case B: Vertex v  is inserted on one edge of a triangle (see Figs. 3 and 4). 
Case B1: The selected edge lies on the outer circuit or “hull” GB ∂=  of the graph, i.e. it 
separates one finite from the infinite region (Fig. 3). We remove the “old” edge 31vv  and add 
3 edges vvvvvv 321 ,, , together with a “new” edge 31vv . As v  is 3-valent, a fourth colour is 
available for this vertex. Note that this case is equivalent to Case A1. 
 
Case B2: The selected edge separates two finite regions (Fig. 4). Let 31vv  denote this 
common edge, which is replaced by vv1  and vv3  (subdivision), and supplemented by edges 

vv2  and vv4 . Now v  is 4-valent, and 4 colours are already used for the adjacent vertices 

41 ...,, vv  in the worst case. Then a fifth colour can be used for v . 
 
This concludes the proof that any planar graph is 5-choosable (5LCT). It is known from 
counter-examples [6] that a list-colouring with less than 5 colours does not exist. With respect 
to colouring, the 5-colour theorem (5CT) is proved as an intermediate result. 
 
 
4 Part 2 of the proof (4CT) 

In order to proceed with Case B2 of the proof of the 4-colour theorem, we have to show that 
by rearrangement of colours, one colour can be released and used for the additional vertex v . 
This can be simply done by means of Kempe chains [2], in accordance with the correct part of 
Kempe’s proof [1] for the 4-valent vertex case. (Note that Kempe chains are not available in 
the list-colouring context, as the vertex-specific colour lists may not contain common 
colours.) 
 
For the completeness of the paper, this part of Kempe’s proof is presented anew. Let jiH ,  
denote the subgraph  G \ v  which contains all vertices coloured by two different colours  

{ }4,3,2,1, ∈ji . A path jiHP ,⊆  connecting two vertices with colours i and j is called a 
Kempe chain. 
 
If 3,1H  is disconnected in such a way that vertices 1v  and 3v  lie in different components of 
this subgraph, no Kempe chain 13P  between 1v  and 3v  exists with alternating colours { }3,1 . 
Hence the part of the chain e.g. starting from vertex 3v  can be re-coloured so that 1)( 3 =vc . 
Then set 3)( =vc . 
 
On the other hand, if this Kempe chain 13P  does exist, the existence of a second Kempe chain 

24P  between vertices 2v  and 4v  with alternating colours { }4,2  is excluded by Jordan’s curve 
theorem: Assume that both 13P  and 24P  do exist. Vertices 2v  and 4v  lie in regions separated 
by the Jordan curve 3113 vvP ∪ . The planarity of the graph allows crossings between 13P  and 

24P  only at a vertex which belongs to both paths, i.e. it has to be coloured with one colour 
from each subset { }3,1  and { }4,2  simultaneously, which is impossible. Hence the part of the 
chain starting e.g. from vertex 4v  can be re-coloured so that 2)( 4 =vc . Then set 4)( =vc . 
 
This concludes the proof of Case B2 and of the 4-colour theorem. 
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5 Conclusions 

Note that the essential feature of this proof is the use of simultaneous construction and 
colouring rules for graphs. This alternative approach does not try to profit from the existence 
of a 5-valent vertex v  and from assumptions about colouring the inner pentagonal circuit of 
the graph G \ v , as was done by Kempe [1] and Heawood [2]. 
 
Another easily extracted result from the above proof is that whenever a plane graph can be 
constructed (and coloured) without employing Case B2 (Case B1 can be replaced by Case A1 
to avoid subdivision), the following corollary holds: 
 
Corollary (4LCT):  Every planar graph which can be constructed from a triangulation 
without subdivision of inner edges is 4-choosable. 
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